Title
West Texas A&M University - Home
Virtual Math Lab

College Algebra
Tutorial 34: Graphs of Quadratic
Functions


 

deskLearning Objectives


After completing this tutorial, you should be able to:
  1. Find the vertex of a quadratic function.
  2. Determine if the vertex is the maximum or minimum point of a quadratic function.
  3. Graph a quadratic function.




deskIntroduction



In this tutorial we will be looking at graphs of quadratic functions.  The graph of a quadratic function is called a parabola and has a curved shape.  One of the main points of a parabola is its vertex.  It is the highest or the lowest point on its graph.  You can think of like an endpoint of a parabola.  I will be showing you how to find the vertex as well as the axis of symmetry that goes through this point.  I will also refresh your memory on how to find the x- and y- intercepts.  If you need a review on what intercepts on a graph are, feel free to go to Tutorial 26: Equations of Lines.  When finding x-intercepts, you will find yourself having to solve a quadratic equation.  If you need a review on solving quadratic equations, feel free to go to Tutorial 17: Quadratic Equations.  If you are in a college algebra class, working with quadratic functions is inevitable, even if it is against your religion.  So I guess you better get started. 

 

 

desk Tutorial



 

Quadratic Function

A quadratic function is a function that 
can be written in the form

quadratic function

where a, b, and c
are constants and not zero


 
Note that in a quadratic function there is a power of two on your independent variable and that is the highest power. 

 
 
 
Standard Form of a 
Quadratic Function

quadratic equation


 
Sometimes your quadratic function is written in standard form.  It is ok to leave it in this form when working with your problem.  I will be showing you how to graph a parabola using either form.

 
 
 
Graph of a Quadratic Function

 
The graph of a quadratic function is called a parabola.  It is basically a curved shape opening up or down.

 
What does a tell us?

 
When you have a quadratic function in either form, quadratic function OR quadratic equation,

if a > 0, then the parabola opens up example 1c,

if a < 0, then the parabola opens down example 2d.


 

Vertex

 
The vertex is the lowest or highest point (depending on direction) on the graph of a quadratic function.

Finding the vertex using the form quadratic function  , not zero:
 
 

If your quadratic function is in the form quadratic function  , not zero,  then the 
 
 

vertex =vertex




Basically you will find the x value of the vertex first and then just plug that value into the function to get the y or functional value of the vertex.

Finding the vertex using the form quadratic equation:
 
 

If your quadratic function is in the form quadratic equation, then the 

vertex = (h, k). 


 
 
 
Axis of Symmetry

 
Each parabola is symmetric about a vertical line called the axis of symmetry.  This vertical line goes through the vertex.

Think of it as a mirrored image about this vertical line.


 
 
The next three graphs illustrate the different aspects of the graph of a quadratic function or parabola.

 
The following is the graph of the function function:

graph 1

I want you to note a few things about this graph:
 
 

First of all, see how the vertex is the lowest point on the graph.  It is either going to be the lowest or highest point on the graph of a quadratic function.

Second, look at the axis of symmetry.  It is not actually part of the graph itself, but is important in that the parabola creates a mirrored image about it.  Note how it is symmetric about the axis of symmetry.  Also, note how it goes through the vertex. 

Third, note how there is one y-intercept but no x-intercept.  The quadratic function can have no, one or two x-intercepts.


 
The following is the graph of the function function 2:

graph 2

I want you to note a few things about this graph:
 
 

First of all, see how the vertex is the lowest point on the graph.  It is either going to be the lowest or highest point on the graph of a quadratic function.

Second, look at the axis of symmetry.  It is not actually part of the graph itself, but is important in that the parabola creates a mirrored image about it.  Note how it is symmetric about the axis of symmetry.  Also, note how it goes through the vertex. 

Third, note how there is one y-intercept and one x-intercept.  The quadratic function can have no, one or two x-intercepts.


 
 
 
The following is the graph of the function function 3:

graph 3

I want you to note a few things about this graph:
 
 

First of all, see how the vertex is the highest point on the graph.  It is either going to be the lowest or highest point on the graph of a quadratic function.

Second, look at the axis of symmetry.  It is not actually part of the graph itself, but is important in that the parabola creates a mirrored image about it.  Note how it is symmetric about the axis of symmetry.  Also, note how it goes through the vertex. 

Third, note how there is one y-intercept and two x-intercepts.  The quadratic function can have no, one or two x-intercepts.


 
 
notebook Example 1: Find the coordinates of the vertex of example 1a.  Without graphing, determine if the vertex is the maximum or minimum point of the quadratic function.

 
Vertex
Note how this quadratic function is written in standard form.  That means we can find the vertex by lining it up with the general standard form and identify (h, k).

 
example 1b

 

*Standard form of quad. function


 
Since (h, k) is the vertex in standard form, what do you think our vertex is for this problem?

If you said (1, -3) you are correct. 
 

Be careful about your signs on this problem.  It is real tempting to say that the vertex is (1, 3).  However take a close look at the standard form.  Notice how the sign in front of h is a minus, but the one in front of k is positive.  So h is the number we are subtracting from x, which in our case is 1.  k is the number we are adding at the end, which our case we are adding a negative 3.


 
Maximum or Minimum?
Next we want to determine if the vertex that we found, (1, -3), is a maximum or minimum point, without graphing.

If we know which direction the curve opens, that can help us answer this question. 

Since a = 4, and 4 is greater than 0, this parabola would open up example 1c.

So does that mean the vertex is a maximum or minimum point?

If you said a minimum point, you are right on.
 

So our vertex (1, -3) is the minimum point.


 
 
 
 
notebook Example 2: Find the coordinates of the vertex of example 2a.  Without graphing, determine if the vertex is the maximum or minimum point of the quadratic function.

 
Vertex
Note how this quadratic function is written in the form quadratic function.  That means we can find the vertex by using the formula vertex.

 
example 2b

 
 

*Identify a, b, and c
 

*Plug values into vertex form. for a, b, and c
 

*Plug -5/4 in for x to find the y value of the vertex

 


 
The vertex would be example 2c.

 
Maximum or Minimum?
Next we want to determine if the vertex that we found,example 2c , is a maximum or minimum point, without graphing.

If we know which direction the curve opens, that can help us answer this question. 

Since a = -2, and -2 is less than 0, this parabola would open down example 2d.

So does that mean the vertex is a maximum or minimum point?

If you said a maximum point, you are right on.
 

So our vertex example 2c is the maximum point.


 
 
Graphing a Quadratic Function

 

 

 
Step 3: Find the intercepts.

 
If you need a review on intercepts feel free to go to Tutorial 26: Equations of Lines.

 
Step 4: Graph the parabola.

 
Plot the points found in steps 2 and 3 and draw a curved line through them.

 
 
 
notebook Example 3: Use the vertex and the intercepts to sketch the graph of the quadratic function example 3a.  Find the equation for this function's axis of symmetry.

 

 
Since a = -1 and -1 < 0, then it looks like it is going to curve down.

This gives us a good reference to know we are going in the right direction. 


 

 
Just like in example 1 above,  this quadratic function is written in standard form.  That means we can find the vertex by lining it up with the general standard form and identify (h, k).

 
example 3b
*Standard form of quad. function

 
Since (h, k) is the vertex in standard form, what do you think our vertex is?

If you said (-1, 4) you are correct. 

Be careful about your signs on this problem.   Notice how the sign in front of h is a minus, but the one in front of k is positive.  So h is the number we are subtracting from x, which in our case is -1.  k is the number we are adding at the end, which our case we are adding a 4.


 

 
y-intercept
Reminder that the y-intercept is always where the graph crosses the y-axis which means x = 0:

 
example 3c

*Replace x with 0

 
The y-intercept is (0, 3).
 

x-intercept
Reminder that the x-intercept is always where the graph crosses the x-axis which means y = 0:


 
example 3d

*Replace y (or f(x)) with 0
 
 
 
 

*Solve the quadratic by factoring
 

 


 
The x-intercepts are (-3, 0) and (1, 0).

 

 
example 3e

 
Axis of symmetry
As shown on the graph, the axis of symmetry is x = -1.

 
 
 
notebook Example 4: Use the vertex and the intercepts to sketch the graph of the quadratic function example 4a.  Find the equation for this function's axis of symmetry.

 

 
Since a = 1 and 1 > 0, then it looks like it is going to curve up.

This gives us a good reference to know we are going in the right direction. 


 

 
Just like in example 2 above,  this quadratic function is written in the form quadratic function.  That means we can find the vertex by using the formula vertex.

 
example 4b

 
 

*Identify a, b, and c
 

*Plug values into vertex form. for a, b, and c
 

*Plug -1 in for x to find the y value of the vertex


 
So the vertex is (-1, 1).

 

 
y-intercept
Reminder that the y-intercept is always where the graph crosses the y-axis which means x = 0:

 
example 4c

*Replace x with 0

 
The y-intercept is (0, 2).
 

x-intercept
Reminder that the x-intercept is always where the graph crosses the x-axis which means y = 0:


 
example 4d
*Replace y (or f(x)) with 0

 
Note that this does not factor.  Let's try solving by using the quadratic formula:

 
example 4e

*Plug in values for a, b, and c
 
 

 


 
Note how we got a negative number underneath the square root.  That means there is no real number solution.  That also means that there are NO x-intercepts.

 

 
example 4f

 
Axis of symmetry
As shown on the graph, the axis of symmetry is x = -1.

 

desk Practice Problems



These are practice problems to help bring you to the next level.  It will allow you to check and see if you have an understanding of these types of problems. Math works just like anything else, if you want to get good at it, then you need to practice it.  Even the best athletes and musicians had help along the way and lots of practice, practice, practice, to get good at their sport or instrument.  In fact there is no such thing as too much practice.

To get the most out of these, you should work the problem out on your own and then check your answer by clicking on the link for the answer/discussion for that  problem.  At the link you will find the answer as well as any steps that went into finding that answer.

 

pencilPractice Problems 1a - 1b: Find the coordinates of the vertex of the given quadratic function.  Without graphing, determine if the vertex is the maximum or minimum point of the quadratic function.

 


 
 

 

pencilPractice Problems 2a - 2b: Use the vertex and the intercepts to sketch the graph of the given quadratic function.  Find the equation for this function's axis of symmetry.

 


 

 

 

desk Need Extra Help on these Topics?



The following is a webpage that can assist you in the topics that were covered on this page:

http://www.purplemath.com/modules/grphquad.htm
This webpage helps you with graphing parabolas.



 

buffalo top

 


Last revised on July 10, 2010 by Kim Seward.
All contents copyright (C) 2002 - 2010, WTAMU and Kim Seward. All rights reserved.