Dr. Christopher S. Baird
University of Massachusetts Lowell

PROBLEM:

Show explicitly that two successive Lorentz transformations in the same direction are equivalent to a single Lorentz transformation with a velocity

$$
v=\frac{v_{1}+v_{2}}{1+\left(v_{1} v_{2} / c^{2}\right)}
$$

This is an alternative way to derive the parallel-velocity addition law.

SOLUTION:

The Lorentz transformations are:

$$
\begin{aligned}
& x_{0}{ }^{\prime}=\gamma_{1}\left(x_{0}-\beta_{1} x_{1}\right) \\
& x_{1}{ }^{\prime}=\gamma_{1}\left(x_{1}-\beta_{1} x_{0}\right) \text { where } \gamma_{1}=1 / \sqrt{1-v_{1}^{2} / c^{2}}, \quad \beta_{1}=v_{1} / c \text { and } x_{0}=c t
\end{aligned}
$$

If we label another frame as the double-prime frame and define it as traveling at a speed v_{2} relative to the prime frame, then the Lorentz transformation between these two frames is:

$$
\begin{aligned}
& x_{0}{ }^{\prime \prime}=\gamma_{2}\left(x_{0}{ }^{\prime}-\beta_{2} x_{1}{ }^{\prime}\right) \\
& x_{1}{ }^{\prime \prime}=\gamma_{2}\left(x_{1}{ }^{\prime}-\beta_{2} x_{0}{ }^{\prime}\right) \text { where } \gamma_{2}=1 / \sqrt{1-v_{2}^{2} / c^{2}}, \text { and } \beta_{2}=v_{2} / c
\end{aligned}
$$

If we now use the first Lorentz transformation as a definition of the prime variables and plug them into the second Lorentz transformation, we have:

$$
\begin{aligned}
& x_{0}{ }^{"}=\gamma_{2}\left(\gamma_{1}\left(x_{0}-\beta_{1} x_{1}\right)-\beta_{2} \gamma_{1}\left(x_{1}-\beta_{1} x_{0}\right)\right) \\
& x_{1}{ }^{\prime}=\gamma_{2}\left(\gamma_{1}\left(x_{1}-\beta_{1} x_{0}\right)-\beta_{2} \gamma_{1}\left(x_{0}-\beta_{1} x_{1}\right)\right)
\end{aligned}
$$

Collect terms:

$$
\begin{aligned}
& x_{0}{ }^{\prime \prime}=\gamma_{2} \gamma_{1}\left(\left(1+\beta_{2} \beta_{1}\right) x_{0}-\left(\beta_{1}+\beta_{2}\right) x_{1}\right) \\
& x_{1}{ }^{\prime}=\gamma_{2} \gamma_{1}\left(\left(1+\beta_{2} \beta_{1}\right) x_{1}-\left(\beta_{1}+\beta_{2}\right) x_{0}\right)
\end{aligned}
$$

Now if we instead identified the double-primed frame as traveling at a speed v relative to the unprimed frame, then the Lorentz transformation relating the two would be:

$$
\begin{aligned}
& x_{0}{ }^{\prime \prime}=\gamma\left(x_{0}-\beta x_{1}\right) \\
& x_{1} "=\gamma\left(x_{1}-\beta x_{0}\right) \text { where } \gamma=1 / \sqrt{1-v^{2} / c^{2}} \text { and } \beta=v / c
\end{aligned}
$$

Comparing this to the double transformation, we see that in order for them to be equivalent, the coefficients must match.

$$
\gamma_{2} \gamma_{1}\left(1+\beta_{2} \beta_{1}\right)=\gamma \quad \gamma_{2} \gamma_{1}\left(\beta_{1}+\beta_{2}\right)=\beta \gamma \quad \gamma_{2} \gamma_{1}\left(1+\beta_{2} \beta_{1}\right)=\gamma \quad \gamma_{2} \gamma_{1}\left(\beta_{1}+\beta_{2}\right)=\beta \gamma
$$

It should be obvious that all of these equations are redundant. Let us take the first one, expand and solve for v.

$$
\begin{aligned}
& \frac{1}{\sqrt{1-v^{2} / c^{2}}}=\frac{1}{\sqrt{1-v_{2}^{2} / c^{2}}} \frac{1}{\sqrt{1-v_{1}^{2} / c^{2}}}\left(1+\frac{v_{2} v_{1}}{c^{2}}\right) \\
& \frac{1}{1-v^{2} / c^{2}}=\frac{1}{1-v_{2}^{2} / c^{2}} \frac{1}{1-v_{1}^{2} / c^{2}}\left(1+\frac{v_{2} v_{1}}{c^{2}}\right)^{2} \\
& 1-v^{2} / c^{2}=\frac{\left(1-v_{2}^{2} / c^{2}\right)\left(1-v_{1}^{2} / c^{2}\right)}{\left(1+\frac{v_{2} v_{1}}{c^{2}}\right)^{2}} \\
& v=\sqrt{c^{2}-\frac{\left(1-v_{2}^{2} / c^{2}\right)\left(1-v_{1}^{2} / c^{2}\right) c^{2}}{\left(1+\frac{v_{2} v_{1}}{c^{2}}\right)^{2}}} \\
& v=\sqrt{c^{2}-\frac{\left(c^{2}-v_{1}^{2}-v_{2}^{2}+v_{1}^{2} v_{2}^{2} / c^{2}\right)}{1+v_{1}^{2} v_{2}^{2} / c^{4}+2 v_{1} v_{2} / c^{2}}} \\
& v=\frac{v_{1}+v_{2}}{1+\left(v_{1} v_{2} / c^{2}\right)} \\
& \hline
\end{aligned}
$$

