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1. Introduction 

The question is often asked, “Why do Maxwell's equations contain eight scalar equations if there are 

only six unknowns? Aren't some of the equations redundant, and if not, isn't the problem over-

specified?” This paper attempts to answer this question. The short answer is that Maxwell's equations 

are neither redundant nor over-specified because only six of Maxwell's equations are dynamical. The 

other two can be thought of as initial conditions. Note that although not typically written down 

explicitly as part of Maxwell's equations, boundary conditions are also considered part of the system. 

Maxwell's equations in their complete form involve six linear partial differential equations, six 

unknowns, and corresponding initial conditions and boundary conditions; and therefore they have a 

unique solution. 

 

2. Definitions 

Let us first make some definitions and dispel common misconceptions. The following analysis focuses 

on Maxwell's equations in vacuum. Including the effects of materials would complicate the analysis 

without changing the core arguments. In modern vector notation and in SI units, Maxwell's equations in 

vacuum are: 

∇ ⋅ �⃑� =
𝜌

𝜖0
,   ∇ ⋅ �⃑⃑� = 0, 

         Maxwell's equations in vacuum in SI units 

∇ × �⃑� = −
𝜕�⃑⃑� 

𝜕𝑡
,  ∇ × �⃑⃑� = 𝜇0𝐉 + 𝜇0𝜖0

𝜕�⃑� 

𝜕𝑡
. 

Here, �⃑�  is the total electric field, �⃑⃑�  is the total magnetic field, ρ is the electric charge density, 𝐉  is the 

electric current density, 𝜖0 is the permittivity of free space, 𝜇0 is the permeability of free space, ∇ ⋅ () is 

the divergence operator, and ∇ × () is the curl operator. We omit hypothetical magnetic charges and 

magnetic currents as they have no bearing on the universe as currently understood and only 

unnecessarily complicate the analysis without changing the core arguments. 

 

The six unknowns to be found are the vector components of the electromagnetic field: 

 

Ex, Ey, Ez, Bx, By, Bz.                  The six unknowns (dependent variables) of Maxwell's equations 

 

These are not constants that need to be found using linear algebra. Rather, they are complicated 

functions of x, y, z, and t that need to be determined, in general. In the language of differential calculus, 

these six unknowns are dependent variables which depend on the four independent variables: 

 

x, y, z, t.         The independent variables of Maxwell's equations 

 

When solving differential equations, we consider a solution to be unique when there is one and only 

one functional form that we can write down for each dependent variable that satisfy the initial 

conditions and boundary conditions, and this functional form includes only known constants and 

independent variables, but no dependent variables or derivatives. 

 



The charge density and current density are not unknowns in this modern condensed form. If they were, 

then everything would be unknown and there would be nothing to solve. Charges and currents create 

fields; the charges and currents are the sources. (Historically, Maxwell's original work treated the 

charges and currents as unknowns, but he also included extra equations which effectively turned them 

into knowns.) 

 

The beginner student may look at Maxwell's equations and think there are only four equations and six 

unknowns, and therefore the problem is underspecified. From a physical standpoint, Maxwell's 

equations are four separate physical laws: Coulomb's/Guass’s law, the Maxwell-Ampere law, Faraday's 

law, and the no-magnetic-charge law. However, from a mathematical standpoint, Maxwell’s equations 

consist of eight scalar equations because two of these physical laws are vector equations with multiple 

components. In vector component form in rectangular coordinates, the full eight equations are: 

𝜕𝐸𝑥

𝜕𝑥
+

𝜕𝐸𝑦

𝜕𝑦
+

𝜕𝐸𝑧

𝜕𝑧
=

𝜌

𝜖0
, 

𝜕𝐵𝑥

𝜕𝑥
+

𝜕𝐵𝑦

𝜕𝑦
+

𝜕𝐵𝑧

𝜕𝑧
= 0,      

𝜕𝐸𝑧

𝜕𝑦
−

𝜕𝐸𝑦

𝜕𝑧
= −

𝜕𝐵𝑥

𝜕𝑡
,  

𝜕𝐵𝑧

𝜕𝑦
−

𝜕𝐵𝑦

𝜕𝑧
= 𝜇0𝐽𝑥 + 𝜇0𝜖0

𝜕𝐸𝑥

𝜕𝑡
,      

𝜕𝐸𝑥

𝜕𝑧
−

𝜕𝐸𝑧

𝜕𝑥
= −

𝜕𝐵𝑦

𝜕𝑡
,  

𝜕𝐵𝑥

𝜕𝑧
−

𝜕𝐵𝑧

𝜕𝑥
= 𝜇0𝐽𝑦 + 𝜇0𝜖0

𝜕𝐸𝑦

𝜕𝑡
,        

𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
= −

𝜕𝐵𝑧

𝜕𝑡
,  

𝜕𝐵𝑦

𝜕𝑥
−

𝜕𝐵𝑥

𝜕𝑦
= 𝜇0𝐽𝑧 + 𝜇0𝜖0

𝜕𝐸𝑧

𝜕𝑡
. 

We therefore seem to have eight independent equations in six unknowns and the problem seems to be 

over-specified (or redundant). The eager student may quickly reply that perhaps Maxwell's equations 

are non-linear. But a perusal of the above equations reveals that each term involves a single dependent 

variable raised to the power of one, and therefore the system is linear. In principle, because the system 

is linear, we can decouple all of the equations and end up with each equation containing only one 

dependent variable. This is in fact what happens when Maxwell's equations are put in wave-equation 

form, as is done later. 

 

In differential calculus, two distinct layers of information must be present in order to have a completely 

unique solution: (1) sufficient differential equations to determine the dependent variables, and (2) 

sufficient boundary conditions to determine the integration constants. The term “boundary conditions” 

used here includes initial conditions, as initial conditions can be thought of as conditions at the 

boundary of time. If the system is linear, as is true for Maxwell's equations, the differential equations 

are sufficient for a unique solution if the number of equations equals the number of unknowns, and if 

all the equations are linearly independent. The boundary conditions are sufficient for a unique solution 

if the number of known boundary conditions equals the number of dependent variables times the 

number of independent variables times the order of the differential equations, and if the boundary 

conditions are not ill-posed mathematically. This number can be understood from the fact that every 

time we integrate away a derivative operator, we introduce an integration constant that must be 

determined using boundary conditions. 

 

In Maxwell's equations, we have first-order differential equations, six dependent variables, and four 

independent variables. We therefore need 24 boundary conditions for a unique solution. Note that in 

most physics problems, it does not seem like we have 24 boundary conditions because of the presence 

of symmetries or trivial boundary conditions. For instance, if we are doing an electrostatic problem, 12 

of the boundary conditions are trivially zero because there are no magnetic fields present. 

 

 

 
Maxwell's equations 

in component form 



The issue of sufficient boundary conditions is a concern only during the application of Maxwell's 

equations to a specific situation, but does not concern the Maxwell's equations themselves. For the 

purposes of our analysis, we assume that the student knows how to properly construct and apply 

boundary conditions to arrive at a unique solution. We can therefore safely ignore boundary condition 

considerations from here on and focus on the other layer: the presence of a sufficient number of 

differential equations to determine the dependent variables. If Maxwell's equations are sufficient for a 

unique solution but not over-specified, we would expect six equations in six unknowns, plus 

appropriate boundary/initial conditions. 

 

 

3. The Uniqueness of Maxwell's Equations in Standard Form 

According to the Helmholtz decomposition theorem (i.e. the fundamental theorem of vector calculus), 

every well-behaved vector field �⃑⃑�  can be decomposed into a sum of a transverse vector field and a 

longitudinal vector field: 

 

�⃑⃑� = �⃑⃑� 𝑡 + �⃑⃑� 𝑙 where  ∇ × �⃑⃑� = ∇ × �⃑⃑� 𝑡 (so that ∇ × �⃑⃑� 𝑙 = 0) and ∇ ⋅ �⃑⃑� = ∇ ⋅ �⃑⃑� 𝑙 (so that ∇ ⋅ �⃑⃑� 𝑡 = 0). 

 

The transverse part �⃑⃑� 𝑡 is a curling (i.e. solenoidal, rotational, non-diverging) vector field. The 

longitudinal part is �⃑⃑� 𝑙   is a diverging (i.e. irrotational, non-curling) vector field. The Helmholtz 

decomposition theorem arises from the fact that the divergence operator and the curl operator can be 

thought of as orthogonal operators. This is because the curl of the gradient is always zero,  

∇ × ∇𝛷 = 0 and the divergence of the curl is always zero, ∇ ⋅ (∇ × �⃑⃑� ) = 0. Note that the terms 

“longitudinal” and “transverse” refer to the directionality of the operators, and not necessarily the 

directionality of the vectors. In other words, �⃑⃑� 𝑡 is the component that results when the transverse 

differential (the curl) is taken, it is not the component that is always transverse to some reference 

vector. 

 

Note that there is another part to the vector field that is both non-curling and non-diverging. If a vector 

field has zero divergence and zero curl, it can still have something else left called the relaxed part (or 

the Laplacian part). It is called the relaxed part because charges and currents are what create diverging 

and curling fields, so in their absence the fields relax to a state that minimizes potential energy while 

still meeting all boundary conditions. The relaxation method is a common numerical method for 

finding the relaxed state of any vector field. We can show the relaxed nature mathematically. If any 

vector field �⃑⃑�  is non-curling, ∇ × �⃑⃑� = 0, then because of the mathematical identity ∇ × ∇𝛷 = 0 we 

must have �⃑⃑� = −∇𝛷. If the vector field is also non-diverging, ∇ ⋅ �⃑⃑� = 0, then upon inserting the 

negative gradient of the scalar field, we find ∇2𝛷 = 0. This is the Laplace equation and the solutions to 

this equation are the relaxed part of �⃑⃑� . Imagine stretching a rubber sheet and fixing it to an irregularly 

shaped rim. Its final shape is a minimal surface analogous to the relaxed state of a vector field. Thus we 

see that even if a vector field is non-curling and non-diverging, it can still have a non-zero and non-

trivial functionality. The relaxed part of a vector field is contained in �⃑⃑� 𝑡 and �⃑⃑� 𝑙 as should be obvious 

from the above analysis. The relaxed part is determined solely by boundary conditions. For this reason, 

we can assume boundary conditions are properly applied so that the relaxed parts are uniquely 

determined without going into any more detail. 

 

We can expand the electric and magnetic fields in Maxwell's equations into their longitudinal and 

transverse components in order to attempt to better analyze the role of each equation and whether there 

is redundancy. We expand the fields according to: 



 

�⃑� = �⃑� 𝑡 + �⃑� 𝑙  and  �⃑⃑� = �⃑⃑� 𝑡 + �⃑⃑� 𝑙. 
 

Inserting these expansions into Maxwell's equations and dropping terms that are identically zero (such 

as ∇ ⋅ �⃑� 𝑡 = 0), they become: 

 

(1)  ∇ ⋅ �⃑� 𝑙 =
𝜌

𝜖0
,   (2)  ∇ ⋅ �⃑⃑� 𝑙 = 0, 

        

(3)  ∇ × �⃑� 𝑡 = −
𝜕�⃑⃑� 𝑡

𝜕𝑡
−

𝜕�⃑⃑� 𝑙

𝜕𝑡
, (4)  ∇ × �⃑⃑� 𝑡 = 𝜇0𝐉 +

1

𝑐2

𝜕�⃑� 𝑡

𝜕𝑡
+

1

𝑐2

𝜕�⃑� 𝑙

𝜕𝑡
. 

 

Taking the divergence of equations (3) and (4) and using the continuity equation, ∇ ⋅ 𝐉 = −
𝜕𝜌

𝜕𝑡
, we 

arrive at the modified forms of these equations: 

 

(3')  
𝜕

𝜕𝑡
(∇ ⋅ �⃑⃑� 𝑙) = 0,  (4')  

𝜕

𝜕𝑡
(∇ ⋅ �⃑� 𝑙) =

𝜕

𝜕𝑡
(

𝜌

𝜖0
). 

 

Upon comparing equations (3') and (4') to equations (2) and (1) respectively, they may seem to be 

identical. In other words, equations (1) and (2) of Maxwell's equations seem to be redundant because 

they are already contained in equations (3) and (4) as made clear in their modified form shown in 

equations (3') and (4'). Equations (3) and (4), which are Faraday's law and the Maxwell-Ampere law, 

constitute six equations in six unknowns, so it makes sense that equations (1) and (2)—

Coulomb's/Guass’s law and the no-magnetic-charge law—could be redundant. So why are 

Coulomb's/Guass’s law and the no-magnetic-charge law always included as part of Maxwell's 

equations? 

 

The answer is that they are not redundant, and the reason why is because equation (3') does not exactly 

match equation (2) and equation (4') does not exactly match equation (1). The presence of the time 

derivative makes all the difference. Equations (3') and (4') do not tell us the longitudinal components of 

the electric and magnetic fields, they only tell as the time-evolution of the longitudinal components of 

the fields. We still need equations (1) and (2) in order to find the initial longitudinal components. So 

Coulomb's/Guass’s law and the no-magnetic-charge law are not redundant. 

 

The subtle effect of the time-derivatives contained in equations (3') and (4') can be made clearer by 

integrating them away. We have to be careful because when we integrate, we have to remember to 

include the integration constant. But because it is a partial derivative, the integration constant is not a 

pure constant, it is only constant with respect to time. It could still be a function of the other dependent 

variables. Upon integrating equations (3') and (4'), we find that Faraday's law and the Ampere-Maxwell 

law only contain the information: 

 

(3'')  ∇ ⋅ �⃑⃑� 𝑙 = 𝑓(𝑥, 𝑦, 𝑧), (4'')  ∇ ⋅ �⃑� 𝑙 =
𝜌

𝜖0
+ 𝑔(𝑥, 𝑦, 𝑧), 

 

where f and g are unknown functions. Comparing equations (3'') and (4'') to equations (1) and (2) we 

see that there is no redundancy after all. We need Coulomb's/Guass’s law and the no-magnetic-charge 

law in order to determine the functions f and g (even though they end up being zero). The fact that 

general conceptual arguments can tell us that f and g above are zero, or the fact that the first two of 

Maxwell's equations tell us that f and g are zero may confuse some people into thinking that the other 



Maxwell equations, (3) and (4), tell us that f and g are zero. This would imply redundancy. But from a 

mathematical perspective, Faraday's law and the Ampere-Maxwell law do not uniquely specify the 

divergence of the fields, and thus there is no redundancy. 

 

If Maxwell's equations are not redundant, then they seem to be over-specified because we still have 

eight equations in six unknowns. But Maxwell's equations are not over-specified and the reason is 

because equations (1) and (2) do not really count as part of the system of linear equations – they count 

only as initial conditions. They are needed to uniquely determine a solution, but they are needed only 

as initial conditions and not as part of the system of linear independent differential equations. Once (1) 

and (2) are used to find the initial state of the longitudinal components of the fields, then equations (3) 

and (4) dictate the time evolution of the longitudinal components at all future times, as made explicit in 

equations (3') and (4'). 

 

The time evolution of the longitudinal components turns out being statically linked. That is, the 

divergence of the longitudinal electric field is linked to the charge density at all times in the same way 

it was initially linked. The relationship is static, but �⃑� 𝑙 itself is not static. This means that the quantity 

∇ ⋅ �⃑� 𝑙 instantaneously tracks the charge density. Some books call this pseudo-static. But the static 

behavior does not change the mathematical arguments that equations (3) and (4) are a complete 

description of the dependent variables, including the dynamical evolution of the longitudinal 

components, and equations (1) and (2) are merely initial conditions. Because the dynamical behavior of 

the longitudinal components is static, the initial values for the longitudinal components end up being 

the same values through all time. As a result, Coulomb's/Guass’s law (1) and the no-magnetic-charge 

law (2) end up being valid for all time and not just at an initial time. But this is just a quirk of the 

physics because their dynamical evolution is statically linked, and is not a mathematical paradox. 

Perhaps for this reason, Coulomb's/Guass law and the no-magnetic-charge law are often incorrectly 

elevated to be considered part of the system of differential equations, when they should only be 

regarded as boundary conditions in time. 

 

In summary, Maxwell's equations are neither over-specified—because we have six equations in 

six unknowns (where Coulomb's/Guass’s law and the no-magnetic-charge law count only as 

initial conditions), nor are they redundant—because Coulomb's/Guass’s law and the no-

magnetic-charge law are needed for a unique solution. 

 

Strictly speaking, equation (2) does not fully specify �⃑⃑� 𝑙, it only specifies the diverging part. There is 

still a relaxed part that is determined by boundary conditions. This means that equations (3') and (2) do 

not doom �⃑⃑� 𝑙 to be initially and forevermore zero. They only doom the ∇ ⋅ �⃑⃑� 𝑙 to be once and 

forevermore zero. The relaxed part of �⃑⃑� 𝑙  can still be non-zero and can even change in time. For 

instance, the magnetic field inside an ideal, infinite solenoid is non-curling and non-diverging, but is 

still real and non-zero, and can even change in time as we change the current in the solenoid. This 

subtlety is partly what keeps causality from being violated.  

 

Consider if at some time t0 we “turn on” a point electric charge q that was not there before and leave it 

on. Static point charges create the pseudo-static (i.e. instantaneous) divergence of the longitudinal 

electric field �⃑� 𝑙 according to (1) and (4'). You might therefore conclude that at the exact moment we 

turn on q, a man on the moon can detect its longitudinal field. This would clearly violate causality. The 

error in our reasoning is that we assumed �⃑� 𝑙 is instantaneous, when clearly equation (4') only specifies 

that ∇ ⋅ �⃑� 𝑙 is statically and therefore instantaneously linked to the charge density. The quantity ∇ ⋅ �⃑� 𝑙 is 



not an independent physical quantity we can measure. We can only measure and give physical reality to 

the total field �⃑� . Therefore causality is not violated. If we worked out the mathematics of a point charge 

turning on, we would find that there are terms in the dynamical equations that cancel the seeming 

instantaneous fields beyond the causality shell. For an excellent explanation of how causality is not 

violated despite Coulomb's law seeming to be instantaneous, see J. D. Jackson, Eur. J. Phys. 31 L79 

(2010). 

 

 

4. Uniqueness of the Wave Form of Maxwell's Equations 

We can cast Maxwell's equations into a wave form. Take the Maxwell-Ampere law and take the partial 

derivative of it with respect to time on both sides: 

 

∇ × (
𝜕�⃑⃑� 

𝜕𝑡
) = 𝜇0

𝜕𝐉 

𝜕𝑡
+ 𝜇0𝜖0

𝜕2�⃑� 

𝜕𝑡2. 

 

Faraday's Law specifies the partial of �⃑⃑�  with respect to t, so we can insert it into this equation to find: 

 

∇ × (∇ × �⃑� ) = −𝜇0
𝜕𝐉 

𝜕𝑡
− 𝜇0𝜖0

𝜕2�⃑� 

𝜕𝑡2. 

 

Using the vector identity ∇ × (∇ × �⃑⃑� ) = ∇(∇ ⋅ �⃑⃑� ) − ∇2�⃑⃑� , this becomes: 

 

∇(∇ ⋅ �⃑� ) − ∇2�⃑� = −𝜇0
𝜕𝐉 

𝜕𝑡
− 𝜇0𝜖0

𝜕2�⃑� 

𝜕𝑡2. 

 

The divergence of E is specified by Coulomb's law, so we can insert it in to find: 

 

∇2�⃑� −
1

𝑐2

𝜕2�⃑� 

𝜕𝑡2 =
1

𝜖0
∇𝜌 + 𝜇0

𝜕𝐉 

𝜕𝑡
. 

 

This is a differential equation involving only �⃑�  and known sources. The electric field has been 

mathematically decoupled from the magnetic field. Because we inserted Coulomb's/Gauss’s law, we 

may be tempted to say that this equation contains Coulomb's/Gauss’s law and therefore 

Coulomb's/Gauss’s law by itself has become redundant. In fact, based on the way we inserted it, this 

equation only contains the gradient of Coulomb's/Gauss’s law. We therefore still need 

Coulomb's/Gauss’s law for a complete solution. 

 

We can do the same thing for the magnetic field. Start with Faraday's law and take the partial derivative 

with respect to time on both sides: 

 

∇ × �⃑� = −
𝜕�⃑⃑� 

𝜕𝑡
, 

 

∇ × (
𝜕�⃑� 

𝜕𝑡
) = −

𝜕2�⃑⃑� 

𝜕𝑡2 . 

 

The partial of �⃑�  is found in the Ampere-Maxwell law, so we can insert it into this equation to find: 

 

∇ × ∇ × �⃑⃑� = 𝜇0∇ × 𝐉 −
1

𝑐2

𝜕2�⃑⃑� 

𝜕𝑡2 . 



 

Again, using the vector identity ∇ × (∇ × �⃑⃑� ) = ∇(∇ ⋅ �⃑⃑� ) − ∇2�⃑⃑� , this becomes: 

 

∇(∇ ⋅ �⃑⃑� ) − ∇2�⃑⃑� = 𝜇0∇ × 𝐉 −
1

𝑐2

𝜕2�⃑⃑� 

𝜕𝑡2 . 

 

The divergence of �⃑⃑�  is specified to be zero by the no-magnetic-charge law, so that we end up with: 

 

∇2�⃑⃑� −
1

𝑐2

𝜕2�⃑⃑� 

𝜕𝑡2 = −𝜇0∇ × 𝐉 . 

 

This is a differential equation involving only �⃑⃑�  and known sources. The magnetic field has been 

mathematically decoupled from the electric field. Because we inserted the no-magnetic-charge law, we 

may be tempted to say that this equation contains that law and therefore the no-magnetic-charge law 

has become redundant. In fact, based on the way we inserted it, this equation only contains the gradient 

of the no-magnetic-charge law. We therefore still need the no-magnetic-charge law for a complete 

solution. 

 

In summary, Maxwell's equations in wave-equation form are: 

∇ ⋅ �⃑� =
𝜌

𝜖0
,    ∇ ⋅ �⃑⃑� = 0,  

   

∇2�⃑� −
1

𝑐2

𝜕2�⃑� 

𝜕𝑡2 =
1

𝜖0
∇𝜌 + 𝜇0

𝜕𝐉 

𝜕𝑡
, ∇2�⃑⃑� −

1

𝑐2

𝜕2�⃑⃑� 

𝜕𝑡2 = −𝜇0∇ × 𝐉 . 

We have to include the first two equations to get a unique solution for the same reason as in the original 

form. Again, the first two equations serve as initial conditions and the second two represent six linear 

differential equations in six unknowns. This form is fully equivalent to the original form. Changing 

Maxwell's equations to this form does not reduce the number of unknowns and does not reduce the 

number of physically relevant equations. What it does accomplish is it completely decouples all of the 

dependent variables. Each of the six dynamical differential equations now contains one and only one 

dependent variable (a vector component of a field). The decoupling is what makes the wave-equation 

form of Maxwell's equations so desirable, not the fact that we have reduced the number of unknowns or 

the number of equations. Note that this is just a mathematical decoupling. Physically the electric field 

and the magnetic field are inseparably connected and interdependent. Forgetting this concept is an easy 

way to fool yourself into think that you have found electromagnetic effects that propagate faster than 

the speed of light, and therefore break causality. To arrive at a valid and complete physical solution for 

a particular situation, you can’t take Maxwell’s equations in wave-equation form, completely ignore the 

magnetic field and solve for just the electric field. 

 

Expanding the fields in Maxwell's equations into longitudinal and transverse components exactly as we 

did previously, we find: 

 

(5)  ∇ ⋅ �⃑� 𝑙 =
𝜌

𝜖0
,     (6)  ∇ ⋅ �⃑⃑� 𝑙 = 0,  

   

(7)  ∇(∇ ⋅ �⃑� 𝑙) − ∇ × (∇ × �⃑� 𝑡) −
1

𝑐2

𝜕2�⃑� 𝑙

𝜕𝑡2 −
1

𝑐2

𝜕2�⃑� 𝑡

𝜕𝑡2 =
1

𝜖0
∇𝜌 + 𝜇0

𝜕𝐉 

𝜕𝑡
,  

 

 Maxwell's equations in 

wave-equation form 



(8)  ∇(∇ ⋅ �⃑⃑� 𝑙) − ∇ × (∇ × �⃑⃑� 𝑡) −
1

𝑐2

𝜕2�⃑⃑� 𝑙

𝜕𝑡2 −
1

𝑐2

𝜕2�⃑⃑� 𝑡

𝜕𝑡2 = −𝜇0∇ × 𝐉 . 

 

Take the divergence of the last two equations and, using the continuity equation, ∇ ⋅ 𝐉 = −
𝜕𝜌

𝜕𝑡
, we find 

modified forms of these equations: 

 

(7')  (∇2 −
1

𝑐2

𝜕2

𝜕𝑡2
) (∇ ⋅ �⃑� 𝑙 −

𝜌

𝜖0
) = 0,  (8')  (∇2 −

1

𝑐2

𝜕2

𝜕𝑡2
) (∇ ⋅ �⃑⃑� 𝑙) = 0. 

 

Comparing equations (7') and (8') to equations (5) and (6), we again see that the dynamical equations 

(7) and (8) seem to contain the divergence equations, but they in fact only contain derivatives of the 

divergence equations. Even though equations (5) and (6) are only initial conditions, we still need them 

in order to find a unique solution. We can see this by integrating away the wave-operator: 

 

(7'')  ∇ ⋅ �⃑� 𝑙 =
𝜌

𝜖0
+ ∫ 𝑃(𝐤 )𝑒𝑖𝐤 ⋅�⃑� −𝑖𝑐𝑘𝑡𝑑3𝐤 ,  (8'')  ∇ ⋅ �⃑⃑� 𝑙 = ∫ 𝑄(𝐤 )𝑒𝑖𝐤 ⋅�⃑� −𝑖𝑐𝑘𝑡𝑑3𝐤 . 

 

Comparing equations (7'') and (8'') to equations (5) and (6), we see that we need equations (5) and (6) 

as initial conditions to determine that there are no extra terms in (7'') and (8''), i.e. determine that P = 0 

and Q = 0. Note that equations (7'') and (8'') are only talking about the the longitudinal components of �⃑�  

and �⃑⃑� . In other words, all that these equations are saying with P = 0 and Q = 0 is that self-propagating 

electromagnetic waves in vacuum, far away from sources, do not involve the diverging nature of �⃑�  and 

�⃑⃑� . The electric field �⃑�  can certainly have a non-zero divergence, but this divergence will not contribute 

to the propagation of self-sustaining electromagnetic waves in vacuum far away from sources. 

 

5. Uniqueness of the Potentials Form of Maxwell's Equations 

Another form of Maxwell's equations can be found by defining potentials. Instead of using some prior 

knowledge of Maxwell's equations to take shortcuts as is traditionally done, let us start as general as 

possible and let the facts fall out along the way so that we can keep track of the number of unknowns 

and the number of independent dynamical differential equations. The magnetic field and electric field 

have curling parts and diverging parts. We can also explicitly write out a time-derivative part in order to 

match traditional potential definitions even though Helmholtz's theorem does not require it. The time-

derivative term may also have a curling or diverging nature. These parts are defined in terms of 

potentials: 

 

�⃑⃑� = ∇ × �⃑⃑� 𝐵 − ∇𝛷𝐵 −
𝜕�⃑⃑� '𝐵

𝜕𝑡
,  

�⃑� = ∇ × �⃑⃑� 𝐸 − ∇𝛷𝐸 −
𝜕�⃑⃑� '𝐸

𝜕𝑡
. 

 

At this point the potentials �⃑⃑� 𝐵, �⃑⃑� 𝐸, �⃑⃑� '𝐵, �⃑⃑� '𝐸 , ΦB, and ΦE are all independent and unknown. We 

therefore have 14 unknowns and need 14 independent linear dynamical differential equations to find a 

unique solution. But Maxwell's equations only contain six dynamical equations in six unknowns. By 

introducing more unknowns through our definition of electromagnetic potentials, we must also 

introduce more equations to ensure uniqueness. We are free to choose any new equations we want 

because they will have no impact on the physics as expressed in the electric and magnetic fields. 

 

Inserting these expansions into Maxwell's equations in vacuum, we find: 

 



𝛻2𝛷𝐸 +
𝜕

𝜕𝑡
∇ ⋅ �⃑⃑� '𝐸 = −

𝜌

𝜖0
,  

𝛻2𝛷𝐵 +
𝜕

𝜕𝑡
∇ ⋅ �⃑⃑� '𝐵 = 0,        

∇(∇ ⋅ �⃑⃑� 𝐸) − ∇2�⃑⃑� 𝐸 −
𝜕

𝜕𝑡
∇ × �⃑⃑� '𝐸 = −

𝜕

𝜕𝑡
∇ × �⃑⃑� 𝐵 +

𝜕

𝜕𝑡
∇𝛷𝐵 +

𝜕2�⃑⃑� '𝐵

𝜕𝑡2 ,  

∇(∇ ⋅ �⃑⃑� 𝐵) − ∇2�⃑⃑� 𝐵 −
𝜕

𝜕𝑡
∇ × �⃑⃑� '𝐵 = 𝜇0𝐉 +

1

𝑐2

𝜕

𝜕𝑡
∇ × �⃑⃑� 𝐸 −

1

𝑐2

𝜕

𝜕𝑡
∇𝛷𝐸 −

1

𝑐2

𝜕2�⃑⃑� '𝐸

𝜕𝑡2 .  

 

We now have eight equations and 14 unknowns. The first two equations can no longer be considered 

initial conditions because of the presence of the time derivative. We added the extra unknowns 

externally through our definition, so we are free (and required) to add any extra equations we want in 

order to get a unique solution. Our choice of additional equations will have no effect on the final form 

of the �⃑�  and �⃑⃑�  fields or on the physics, because extra unknowns are purely an artifact of the way we 

defined the potentials. For a unique solution, we need more initial/boundary condition equations, and 6 

more dynamical equations (14 total minus the 8 already present) to add to the system of linear 

equations. There is no “right” set of equations to add, as they all lead to the same physical results. Note 

that some of the equations become trivially satisfied, so that one is tempted to discard them. But in the 

interest of having n equations in n unknowns, let us track all of them. We first need initial conditions 

specifying the divergence of the vector potentials as well as the other usual boundary conditions. One 

common choice (known as the Coulomb gauge) is the set of trivial conditions: 

 

∇ ⋅ �⃑⃑� 𝐵 = 0,  ∇ ⋅ �⃑⃑� 𝐸 = 0,  ∇ ⋅ �⃑⃑� '𝐵 = 0,  ∇ ⋅ �⃑⃑� '𝐸 = 0,  𝛷𝐵(on 𝑆) = 0,  �⃑⃑� '𝐵(𝑡 = 0) = 0,  
𝜕�⃑⃑� '𝐵

𝜕𝑡
(𝑡 = 0) = 0. 

 

These equations are only initial/boundary conditions. We still need to add 6 more dynamical equations 

for a unique solution. Because we are free to choose any equations, the trivial choices lead to the most 

compact final forms and are therefore the most desirable and the most traditional. The traditional 

choice of six additional equations to add is: 

 

�⃑⃑� 𝐸 = 0, 

�⃑⃑� 𝐵 = �⃑⃑� '𝐸 . 

 

Both of these expressions are vector expressions in three components, so they count as six equations. 

By adding these 6 equations (and the appropriate initial/boundary conditions) to the Maxwell 

equations, we therefore have 14 equations in 14 unknowns. With 14 equations and 14 unknowns and 

sufficient initial/boundary conditions, we therefore have a unique solution. 

 

Note that because the additional equations and initial conditions chosen here are so trivial, Maxwell's 

equations in potential form seems to quickly collapse to four meaningful equations in four unknowns. 

For this reason, it may be tempting to claim that there is redundancy in Maxwell's equations, because 

we are able to go from six equations in six unknowns in the field representation to four equations in 

four unknowns in the potentials representation. But the truth is that we went to 14 equations in 14 

unknowns in the potentials representation. With a clever choice of additional equations, most of these 

equations are trivial and therefore can be ignored when solving a physics problem. But from a 

mathematical standpoint, all 14 equations are necessary for a unique solution in the potentials 

representation, and this why Maxwell's equations are not redundant. 

 

  



In summary, for one particular choice of additional equations (the Coulomb gauge), Maxwell's 

equations in complete form in the potentials representation are: 

Initial conditions: 

∇ ⋅ �⃑⃑� 𝐵 = 0, ∇ ⋅ �⃑⃑� 𝐸 = 0, ∇ ⋅ �⃑⃑� '𝐵 = 0, ∇ ⋅ �⃑⃑� '𝐸 = 0, 𝛷𝐵(on 𝑆) = 0, �⃑⃑� '𝐵(𝑡 = 0) = 0, 
𝜕�⃑⃑� '𝐵

𝜕𝑡
(𝑡 = 0) = 0. 

 

System of equations: 

�⃑⃑� 𝐸 = 0, 

�⃑⃑� 𝐵 = �⃑⃑� '𝐸 , 

∇2𝛷𝐸 +
𝜕

𝜕𝑡
∇ ⋅ �⃑⃑� '𝐸 = −

𝜌

𝜖0
,  

∇2𝛷𝐵 +
𝜕

𝜕𝑡
∇ ⋅ �⃑⃑� '𝐵 = 0,       

∇(∇ ⋅ �⃑⃑� 𝐸) − ∇2�⃑⃑� 𝐸 −
𝜕

𝜕𝑡
∇ × �⃑⃑� '𝐸 = −

𝜕

𝜕𝑡
∇ × �⃑⃑� 𝐵 +

𝜕

𝜕𝑡
∇𝛷𝐵 +

𝜕2�⃑⃑� '𝐵

𝜕𝑡2 ,  

∇(∇ ⋅ �⃑⃑� 𝐵) − ∇2�⃑⃑� 𝐵 −
𝜕

𝜕𝑡
∇ × �⃑⃑� '𝐵 = 𝜇0𝐉 +

1

𝑐2

𝜕

𝜕𝑡
∇ × �⃑⃑� 𝐸 −

1

𝑐2

𝜕

𝜕𝑡
∇𝛷𝐸 −

1

𝑐2

𝜕2�⃑⃑� '𝐸

𝜕𝑡2 .  

 

Recall that:  �⃑⃑� = ∇ × �⃑⃑� 𝐵 − ∇𝛷𝐵 −
𝜕�⃑⃑� '𝐵

𝜕𝑡
  and  �⃑� = ∇ × �⃑⃑� 𝐸 − ∇𝛷𝐸 −

𝜕�⃑⃑� '𝐸

𝜕𝑡
. 

 

These equations can be inserted into each other in the usual away in order to arrive at mostly uncoupled 

equations: 

Initial conditions: 

∇ ⋅ �⃑⃑� 𝐵 = 0, ∇ ⋅ �⃑⃑� 𝐸 = 0,  ∇ ⋅ �⃑⃑� '𝐵 = 0, ∇ ⋅ �⃑⃑� '𝐸 = 0, 𝛷𝐵(on 𝑆) = 0, �⃑⃑� '𝐵(𝑡 = 0) = 0, 
𝜕�⃑⃑� '𝐵

𝜕𝑡
(𝑡 = 0) = 0. 

 

System of equations: 

�⃑⃑� 𝐸 = 0, 

�⃑⃑� 𝐵 = �⃑⃑� '𝐸 , 

𝛷𝐵 = 0,        

�⃑⃑� '𝐵 = 0, 

∇2𝛷𝐸 = −
𝜌

𝜖0
, 

∇2�⃑⃑� 𝐵 −
1

𝑐2

𝜕2�⃑⃑� 𝐵

𝜕𝑡2
= −𝜇0𝐉 +

1

𝑐2

𝜕

𝜕𝑡
∇𝛷𝐸.  

Note that:  �⃑⃑� = ∇ × �⃑⃑� 𝐵  and  �⃑� = −∇𝛷𝐸 −
𝜕�⃑⃑� 𝐵

𝜕𝑡
. 

 

It becomes obvious in this mostly-uncoupled form, that only the last two equations are useful: the 

Poisson equation for the electrostatic potential and the wave equation for the magnetic vector potential. 

But from a mathematical standpoint, there are still 14 equations in 14 unknowns present and needed in 

order to have a unique solution. All 14 equations and all boundary conditions are needed to completely 

define the fields in terms of potentials in the most general way but still have a unique solution. If all the 

boundary conditions and trivial equations are ignored, Maxwell's equations in potential form in the 

Coulomb gauge act like 4 equations in 4 unknowns. This is very useful to solve problems, but it does 

not imply that the Coulomb gauge is special or that the original Maxwell's equations contained 

redundancies. 

 

 
Maxwell equations in complete, 

potentials form (Coulomb Gauge) 

 Mostly-uncoupled Maxwell 

equations in complete, potentials 

form (Coulomb Gauge) 


