Classification of targets using optimized ISAR Euler imagery

Christopher S. Baird, William T. Kersey, Robert Giles, W. E. Nixon

Submillimeter-Wave Technology Laboratory (STL)
University of Massachusetts Lowell
175 Cabot Street
Lowell, MA 01854

U. S. Army National Ground Intelligence Center (NGIC)
2055 Boulders Road
Charlottesville, VA 22911

SPIE Defense and Security Symposium
Orlando, Florida
April 17-21, 2006
Outline

• Data Acquisition
• ISAR Euler Imagery
• Redefining Unavoidable Ambiguities
• Characterizing Non-Persistent Scatterers
• Reproducibility Study Results
• Persistence Study Results
• Conclusion
Data Acquisition – Full-Polarimetric Linear RCS

- Compact Radar Range: STL
- Target Scale: 1/16th
- RF Bandwidth: 24 Ghz
- Center Frequency: 160 GHz
- Frequency Steps: 128 or 256
- Azimuth Increment: .05°
ISAR Euler Imagery

Euler Parameter Definitions

The known scattering matrix S can be diagonalized to S_D by applying a transform U

$$S_D = U^T S U$$

The Euler parameters are defined in terms of S_D and U according to

$S_D = \begin{bmatrix} m e^{i2\nu} & 0 \\ 0 & m \tan^2(\gamma) e^{-i2\nu} \end{bmatrix}$

$U = \begin{bmatrix} \cos(\psi) & -\sin(\psi) \\ \sin(\psi) & \cos(\psi) \end{bmatrix} \begin{bmatrix} \cos(\tau) & i \sin(\tau) \\ i \sin(\tau) & \cos(\tau) \end{bmatrix}$

m = maximum reflectivity
ψ = orientation angle
τ = symmetry angle
ν = odd/even bounce angle
γ = polarizability angle
ISAR Euler Imagery

Euler Parameter Derivations

The scattering matrix is reduced to 5 meaningful parameters:

\[S = e^{i\theta} \begin{bmatrix} a e^{i\beta} & c \\ c & d e^{i\phi} \end{bmatrix} \]

The corresponding Kennaugh power transfer matrix is calculated to be

\[K = \begin{bmatrix} \frac{1}{2}(a^2 + 2c^2 + d^2) & \frac{1}{2}(a^2 - d^2) & ac \cos b + d \cos f & ac \sin b - cd \sin f \\ \frac{1}{2}(a^2 - d^2) & \frac{1}{2}(a^2 - 2c^2 + d^2) & ac \cos b - cd \cos f & ac \sin b + cd \sin f \\ ac \cos b + cd \cos f & ac \cos b - cd \cos f & c^2 + ad \cos(b - f) & ad \sin(b - f) \\ ac \sin b - cd \sin f & ac \sin b + cd \sin f & ad \sin(b - f) & c^2 - ad \cos(b - f) \end{bmatrix} \]

New variables are defined in terms of the known scattering parameters

\[K = \begin{bmatrix} A_0 + B_0 & C_\psi & H_\psi & F \\ C_\psi & A_0 + B_\psi & E_\psi & G_\psi \\ H_\psi & E_\psi & A_0 - B_\psi & D_\psi \\ F & G_\psi & D_\psi & -A_0 + B_0 \end{bmatrix} \]
ISAR Euler Imagery

Euler Parameter Derivations

By applying back rotations to the Kennaugh matrix one by one, and requiring stepwise diagonalization, the first three Euler parameters are derived:

\[\psi = \tan^{-1} \left(\frac{-C_\psi + \sqrt{C_\psi^2 + H_\psi^2}}{H_\psi} \right) \]

\[\tau = \frac{1}{2} \tan^{-1} \left(\frac{F_\psi}{C_\psi \cos(2\psi) + H_\psi \sin(2\psi)} \right) \]

\[\nu = \frac{1}{2} \tan^{-1} \left(\frac{B - A_0 + \sqrt{(B - A_0)^2 + (D \cos(2\tau) - E \sin(2\tau))^2}}{D \cos(2\tau) - E \sin(2\tau)} \right) \]

where

\[B = B_\psi \cos(4\psi) + E_\psi \sin(4\psi) \]

\[E = E_\psi \cos(4\psi) - B_\psi \sin(4\psi) \]

\[D = D_\psi \cos(2\psi) - G_\psi \sin(2\psi) \]
ISAR Euler Imagery

Euler Parameter Derivations

• The remaining Kennaugh matrix K''' is independent of everything but m and gamma.

• By matching K''' with its definition below, the final two parameters are derived

\[
K''' = m^2 \begin{bmatrix}
\frac{1}{2} (1 + \tan^4(\gamma)) & \frac{1}{2} (1 - \tan^4(\gamma)) & 0 & 0 \\
\frac{1}{2} (1 - \tan^4(\gamma)) & \frac{1}{2} (1 + \tan^4(\gamma)) & 0 & 0 \\
0 & 0 & \tan^2(\gamma) & 0 \\
0 & 0 & 0 & -\tan^2(\gamma)
\end{bmatrix}
\]

\[
m = \sqrt{A_0 + B_0 + \sqrt{C_\psi^2 + F_\psi^2 + H_\psi^2}}
\]

\[
\gamma = \tan^{-1} \left[\frac{A_0 + B_0 - \sqrt{C_\psi^2 + H_\psi^2 + F_\psi^2}}{A_0 + B_0 + \sqrt{C_\psi^2 + H_\psi^2 + F_\psi^2}} \right]^{1/4}
\]
Redefining Unavoidable Ambiguities

Unavoidable ambiguities occur when multiple sets of Euler parameters map to the same scattering matrix regardless of how the transform equations are derived.

Example: spherical scatterer

\[\tau = 0^\circ, \nu = 0^\circ, \gamma = 45^\circ, m = 0.5, \psi = \psi_0 \]

\[S = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \]

- The same scattering matrix results for all values of psi (orientation angle).
- But the orientation angle of a sphere is physically meaningless, thus we can redefine psi in this case to be 0.
- All ambiguities can be redefined and removed in this way.
Redefining Unavoidable Ambiguities

- A tabulation of all possible sets of Euler parameters (to within a degree) and their corresponding scattering matrices leads to identification of all ambiguities
- 41 ambiguities were identified, redefined and removed, a few are shown below

<table>
<thead>
<tr>
<th>Ambiguous Sets</th>
<th>Scattering Matrix</th>
<th>Redefined Set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ ψ τ ν</td>
<td>γ ψ τ ν</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 $+$90 0 all</td>
<td>$\begin{bmatrix} 0 & 0 \ 0 & d \end{bmatrix}$</td>
<td>0 90 0 0</td>
<td>wire at 90 deg</td>
</tr>
<tr>
<td>0 0 0 all</td>
<td>$\begin{bmatrix} a & 0 \ 0 & 0 \end{bmatrix}$</td>
<td>0 0 0 0</td>
<td>wire at 0 deg</td>
</tr>
<tr>
<td>45 all 0 0</td>
<td>$\begin{bmatrix} a & 0 \ 0 & a \end{bmatrix}$</td>
<td>45 0 0 0</td>
<td>flatplate, sphere</td>
</tr>
<tr>
<td>0 all $-$45 all</td>
<td>$\begin{bmatrix} -ia & a \ a & ia \end{bmatrix}$</td>
<td>0 0 $-$45 0</td>
<td>positive helix</td>
</tr>
<tr>
<td>0 $-$45 0 all</td>
<td>$\begin{bmatrix} -a & a \ a & -a \end{bmatrix}$</td>
<td>0 $-$45 0 0</td>
<td>wire at $-$45 deg</td>
</tr>
<tr>
<td>0 all 45 all</td>
<td>$\begin{bmatrix} ia & a \ a & -ia \end{bmatrix}$</td>
<td>0 0 45 0</td>
<td>negative helix</td>
</tr>
</tbody>
</table>
Redefining Unavoidable Ambiguities

- With the ambiguities removed, the transform leads to optimized Euler imagery
Characterizing Non-Persistent Scatterers

- Non-persistent scatterers fluctuate rapidly in look angle and degrade accuracy.
- Characterizing non-persistent scatterers should lead to minimizing their effect.
- Non-persistence is thought to be caused by pixels containing multiple scatterers.
- If this is true, it leads to two testable predictions:
 1. The average error in reproducibility should decrease for better resolutions.
 2. The average persistence should increase for better resolutions.
Characterizing Non-Persistent Scatterers

1. The average error in reproducibility should decrease for better resolutions
2. The average persistence should increase for better resolutions
Reproducibility Results: Slicy

![Graph showing error (APD) vs resolution (inch)]

- m
- gamma
- psi
- tau
- nu
Reproducibility Results: Simulator

![Graph showing error (APD) vs. resolution (inch) for different parameters: m, gamma, psi, tau, nu.](image)
Reproducibility Results: T-72M1

Error (APD) vs. Resolution (inch) graph for different parameters.
Persistence Results: Slicy
Persistence Results: Simulator

![Graph showing the relationship between Resolution (inch) and Persistence (deg)]

- m
- gamma
- psi
- tau
- nu
Persistence Results: T-72M1
Conclusion

• Euler transform equations have been explicitly derived using the Kennaugh power transfer matrix

• Optimized Euler imagery has been created using an Euler transform where the ambiguities have been removed

• The reproducibility of Euler images improves for smaller pixel sizes, supporting the multiple-scatterer pixel concept

• The scatterer persistence in look angle improves for smaller pixel sizes, also supporting the multiple-scatterer pixel concept

• Future minimization of the effect of multiple-scatterer pixels should further optimize ISAR Euler imagery for target classification